Wyoming protocol server for onnx asr speech to text system
Find a file
2026-01-25 21:38:32 +00:00
.github/workflows Update docker-publish-gpu-tensorrt.yml 2025-07-07 07:47:28 +01:00
tests Change tests 2025-10-17 21:34:57 +01:00
tools Fix tests 2025-07-14 07:51:20 +01:00
wyoming_onnx_asr Update Dockerfiles and README to use ONNX_ASR_MODEL_DIR for model caching; upgrade onnx-asr to 0.10.1 2026-01-17 09:05:55 +00:00
.dockerignore General tidy 2025-07-04 08:30:46 +01:00
.gitignore Add tensorrt 2025-07-06 12:21:54 +01:00
CHANGELOG.md Update changelog and version 2026-01-25 21:38:32 +00:00
compose.gpu-trt.yaml Update changelog + other bits 2025-07-13 21:46:21 +01:00
compose.gpu.yaml Update changelog + other bits 2025-07-13 21:46:21 +01:00
compose.yaml Update changelog + other bits 2025-07-13 21:46:21 +01:00
Dockerfile Update Dockerfiles and README to use ONNX_ASR_MODEL_DIR for model caching; upgrade onnx-asr to 0.10.1 2026-01-17 09:05:55 +00:00
gpu-tensorrt.Dockerfile Update Dockerfiles and README to use ONNX_ASR_MODEL_DIR for model caching; upgrade onnx-asr to 0.10.1 2026-01-17 09:05:55 +00:00
gpu.Dockerfile Update Dockerfiles and README to use ONNX_ASR_MODEL_DIR for model caching; upgrade onnx-asr to 0.10.1 2026-01-17 09:05:55 +00:00
LICENSE.md General tidy 2025-07-04 08:30:46 +01:00
mise.toml Add tensorrt 2025-07-06 12:21:54 +01:00
mypy.ini Initial commit 2023-10-02 10:49:18 -05:00
pyproject.toml Update changelog and version 2026-01-25 21:38:32 +00:00
README.md Update Dockerfiles and README to use ONNX_ASR_MODEL_DIR for model caching; upgrade onnx-asr to 0.10.1 2026-01-17 09:05:55 +00:00
uv.lock Update changelog and version 2026-01-25 21:38:32 +00:00

Wyoming Onnx ASR

Wyoming protocol server for the onnx-asr speech to text system.

Docker Image

docker run -it -p 10300:10300 -v /path/to/local/data:/data ghcr.io/tboby/wyoming-onnx-asr

or for gpu

docker run -it -p 10300:10300 --gpus all -v /path/to/local/data:/data ghcr.io/tboby/wyoming-onnx-asr-gpu

There is also gpu TensorRT support, but it's a huge image and doesn't seem to make much performance difference. You might want to mount in a cache folder if using it (/cache).

Local Install

Install uv

Clone the repository and use uv:

git clone https://github.com/tboby/wyoming-onnx-asr.git
cd wyoming-onnx-asr
uv sync

Run a server anyone can connect to:

uv run --uri 'tcp://0.0.0.0:10300'

The --model-en or --model-multilingual can also be a HuggingFace model but see onnx-asr for details

NOTE: Models are downloaded under ONNX_ASR_MODEL_DIR (default /data in Docker images), with a per-model subdirectory. You may need to adjust this when using a read-only root filesystem (e.g., ONNX_ASR_MODEL_DIR=/tmp). TensorRT engine cache remains under /cache/tensorrt when using the gpu-trt image.

Configuration

  • Quantization: the parakeet model supports int8, but make sure to compare as performance may or may not improve.
  • Model cache directory: set --model-dir or ONNX_ASR_MODEL_DIR (default /data, per-model subdirectories).

Running tooling

Install mise and use mise run to get a list of tasks to test, format, lint, run.